Network Location Problem with Stochastic and Uniformly Distributed Demands
Authors
Abstract:
This paper investigates the network location problem for single-server facilities that are subject to congestion. In each network edge, customers are uniformly distributed along the edge and their requests for service are assumed to be generated according to a Poisson process. A number of facilities are to be selected from a number of candidate sites and a single server is located at each facility with exponentially distributed service times. Using queueing analysis, we develop a mixd integer mathematical model to minimize the total travel and the average waiting times for customers. In order to evaluate the validity of the proposed model, a numerical example is solved and analyzed using GAMS software. In addition, since the proposed problem is NP-hard, two metaheuristic algorithms including a genetic algorithm and a simulated annealing algorithm are developed and applied for large-size problems.
similar resources
Competitive Vehicle Routing Problem with Time Windows and Stochastic Demands
The competitive vehicle routing problem is one of the important issues in transportation area. In this paper a new method for competitive VRP with time windows and stochastic demand is introduced. In the presented method a three time bounds are given and the probability of arrival time between each time bound is assumed to be uniform. The demands of each customer are different in each time wind...
full textMulti-commodity Multimodal Splittable Logistics Hub Location Problem with Stochastic Demands
This study presents a multimodal hub location problem which has the capability to split commodities by limited-capacity hubs and transportation systems, based on the assumption that demands are stochastic for multi-commodity network flows. In the real world cases, demands are random over the planning horizon and those which are partially fulfilled, are lost. Thus, the present study handles dema...
full textEmergency Service Vehicle Location Problem with Batch Arrival of Demands
In this paper an emergency service vehicle (ESV) location problem has been considered in which it is assumed that each emergency call may require more than one ESV. In ESV location problem two factors should be known; the location of stations and the number of ESVs at each station. Hence, a nonlinear mixed integer programming model is presented in order to maximize the total response rate to th...
full textDynamic Facility Location with Stochastic Demands
In this paper, a Stochastic Dynamic Facility Location Problem (SDFLP) is formulated. In the first part, an exact solution method based on stochastic dynamic programming is given. It is only usable for small instances. In the second part a Monte Carlo based method for solving larger instances is applied, which is derived from the Sample Average Approximation (SAA) method.
full textModelling and Solving the Capacitated Location-Routing Problem with Simultaneous Pickup and Delivery Demands
In this work, the capacitated location-routing problem with simultaneous pickup and delivery (CLRP-SPD) is considered. This problem is a more realistic case of the capacitated location-routing problem (CLRP) and belongs to the reverse logistics of the supply chain. The problem has many real-life applications of which some have been addressed in the literature such as management of liquid petrol...
full textFacility Location Problem with Fuzzy Random Demands
Three types of fuzzy random programming for capacitated location-allocation problem with fuzzy random demands are proposed according to different criteria, including the expected value model, chanceconstrained programming and dependent-chance programming. Finally, integrating the network simplex algorithm, fuzzy random simulation and genetic algorithm, a hybrid intelligent algorithm is produced...
full textMy Resources
Journal title
volume 29 issue 5
pages 654- 662
publication date 2016-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023